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FLOW OF PLASTICO-VISCOUS MEDIA IN NONCIRCULAR PIPES
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The flow of a plastico-viscous medium under a constant pressure
head in circular and annular pipes was considered in papers [1-4],

In this paper we use the method of a small parameter to study
the steady flow of a plastico-viscous medium in noncircular pipes.

1, In an infinitely long elliptical pipe det
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where 8 is a dimensionless parameter; the material flows in the posi-
tive direction of the z axis under the action of a constant pressure gra-
dient ¢ = —3p/dz.
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Fig, 1

We denote by u the viscosity coefficient, by k the yield point,
by S the cross-sectional area, and by L the perimeter of the core cross
section,

Assuming that the flow is linear, we have in a cylindrical coor-
dinate system [2]
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Here w(r, ¢) is the velocity and Ty is the limiting shear stress.

For determining w(r, ¢), the unknown boundary rg = 1g(¢) of
the rigid core and its velocity v = const, it is necessary to solve Eq.
(1.1) for the following conditions:

dw/on =0, ¢S=4kL, v=w forr=r,, (1.2)

Here n is the normal to the core boundary. At the surface of the
pipe we assume that w = 0.

We seek a solution in the form of expansions in the small para-

meter
oo o0 o0
w= 3 8", o= 6™, re= 3 8"r™. (1.3)
n=0 n=_ n=0

We adopt the solution of [2] for flow in a circular pipe of radius
b as the zero approximation
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w* == 5 (b2 — <b) (1.4)
Here and in what follows, we retain the earlier notation and re-
fer the velocities w(R), v(?) to the quantity kb/u. the polar radius r
and all linear dimensions to the quantity Zk/qz. and the stress T, to
the quantity k.

The equation of the contour of the pipe cross section in cylindri-
cal coordinates can be written in series form:

r=1>b-+4 8bcos2p —3,6% (1 —cosdp)+ ..., (1. 8)

After linearizing (1. 1) and (1. 2) with respect to the small para-
meter 6, we obtain, using (1.3)-(1.5), the equations of the first ap-
proximation
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Representing the solution of Eq. (1. 6) in the form w’ = R (1)
&(¢), we obtain

w = Colnr + Dy [Cyf1(r) + Difa{r)} cos 2@, (Co, Dy, C;, Dh ='const)s

where
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are the solutions of the hypergeometric equation
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From the boundary conditions (1. 6) we obtain Dy = 0, Cy=0
Dy =0, Gy =3/(3b ~ 1). Thus,

3r: —4r

1 2b
wh = —;DT_:?_— €08 2Q, g’ = g5y 0529, v =0. (1.7)

The equations for the second approximation of the problem are

w1 Bw” 1 8w
am t oy e T =1 e = () +8(cosde.
a . b 19b — 18b7 —3 3—5b
B Ao =gy ¥ b= T @b 1) T 4@ —1) 04
o
ow” b .
-3—6 . == mz sind@» (1' 8)
aw b
= F(31; 1)2“‘5 29, 0" =" oy + gr i (! + cos gk
b(i——ur ) b(Br—1)(27r2 —18r — 1) |

Y =Fm@—1p O =""mr—nEe— 1

Separating the variables, we obtain
w” = Ry (r) + Ry (r) cos 4

where Ry(r) and Ry(r) are the general solutions of the inhomogeneous
equations

d2R; 1dm, d*Ry 1 dRy 16

72’73_+ r dr =¥ drt + 5 F dr  r{r—1) Ra==06(r)» (1.9)
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The general solution of the first equation of (1.9) is

b 1
Rx:—m(Alnr—}—Qr'——T—{—B) (4, B =const)s

The second equation of (1. 9) is a hypergeometric equation and
its solution {5] is
b
Re=CoP ()} + C3T (r}) + m E(r), (Cz, Cs=const),
P (r) = 35r* — 80r3 4 60r2 — 16r 4- 1,
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a1 =1, az = 0.78775, az = 0.08870, a3 = 0.40026,
Fr=—1, Fy=0.002646, Fj3=0.0049553, F;= — 0.0052577,
Hy = 0.0625, Hp=0.32857, Hs=0.22074, [l5=0.387%%
§1=-—32, 82=0.10536, S3=0.1828, 85 = — 0.16707,
My =225 My=10.44778, My;=06.17284, M,=12.11781,

Using the boundary conditions (1. 8), we finally obtain

b 1
w'/=—T‘ﬂ]'—_‘B2[Alnr+9r—~7—f»B:|+
(1. 10)
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. From (1. 10) and (1. 18) it is easy to obtain ry and v", whose ex-
pressions we omit because of their excessive length,

It should be noted that from the condition of existence of flow in
an elliptical pipe s, = KL, (S, is the area and L, the perimeter of
the elliptical cross section of the pipe) it follows that b = 1 + 1, 252,
Forb < 1 +1,25 % the pressure head ¢? is insufficient to produce a
flow. ’

Fig. 2

Figure 1 gives the contour of the pipe, the boundaries of the rig-
id core and the velocity curves in the first and second approximations
for the case b = 2 and § = 0,25, The broken lines show the contours of
the core and the cross section of the pipe in the first and second approx-
imations, The velocity curve of the zero approximation agrees with
the velocity curve of the first approximation for ¢ = 45°,

In Fig, 1 the dimensions of the velocity curves are increased five
times, :

2. Let us now consider the steady flow of a plastico-viscous me-
dium in the space between two coaxial elliptical pipes. We assume
that the axes of the elliptical contours L, and Ly of the internal and the
external pipes form an angle g, (Fig. 2), and that under the action of
a constant pressure gradient q = —8p/dz the medium has a velocity
w(t, ¢) in the positive direction of the z axis. We denote by Ly, Ly
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the perimeters of the internal and external pipes, by Ly, Ly the perim-
eters of the internal and external boundaries of the rigid core and by §
the cross-sectional area of the core. -

Fig. 3

For determining w(r, #) the equations for rj{¢), ry(¢), i.e.,
the boundaries Ly and Lj of the core, and its velocity v, we have Eq.
(1. 1) and the relations '

@285 = k(L1 La), w(r:, @)=w(re, @)=v,

Gwy o _ dw
onl, = on
=3

(2.1)

=0, wiy, =wi, =0,

L,

We will use the dimensioniess quantity 6 < 1, which character-
izes the ellipticity of the contours Ly and Ls, as the small parameter.
Representing the unknown quantities w, ry, 1y, and v as series (1. 3),

we retain only the terms of order &
w=wuw - 0w, r =nr°+48r/,

v=0°+4 6v .

(2.2)

ry = 1"+ 8ry,

The equations of the boundaries L, and Lg can be written respec-
tively in the following form:

ro = a (1 + 8dycos 2¢), ry =15 [1+ 8dycos 2(p — g+ (2.3)

where a and b are the radii of the circles into which the ellipses L, and

Lg transform at 6 = 0, and dy and dg are dimensionless coefficients.

Retaining the earlier notation, we change ro dimensionless vari-
ables by referring w°, w', v°, and v' to 2Kk?/q?y, the stress Ty to k, and
the polar radius r, @, and b to 2_1</qz.

The solution of the pioblem in the zerc-th approximation [3] can
be written

a2_r2- o > r -
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where the radii r,° and 1,° of the internal and external boundaries of
the rigid core are related by the following equation:
a?— 7‘192 "13
r’=r’+1, r—f—a—-rl"w}—rl’(rl’-f—nln——;:
b2 — py2 :
2

rs
= b - (2 — 1) In —;I~ .

It should be noted that v° = wi(r;) = w52 9).

Linearizing Eqs. (1.1) and (2. 1) and using (2. 2)-(2.4), we aob-
tain equations for the components of the first approximation.

For the region 1 adjoining the boundary of the internal pipe
(Fig. 2) we have

dw®

w'(e, @)= —"g } adg c08 20, (2. 5)
r=q
, [310’ (8%’)‘1} dw! =0
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i ar \ dr? pare | 00 Lo
For_fegion 2 the analogous expressions are
) dot
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re=
dw’ 132w\t ow’
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For w' we obtain

%' { ow’ 4
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A= L+ 352=0 (A=r(r°+1)). (2.7)

T
Here the negative sign corresponds to region 1 and the positive
sign to region 2.
The linearized kinematic and dynamic conditions of motion of
the core as a rigid whole become
23

\ (re' —r')yde =0+ (2.8)
0

W (r°,

@) =w'(re", §) =7,

The solutions of Egs. (2, 6) which we shall henceforth denote by
by wj and wj, are found as

o0
wy' = Co+ Eolnr+ 2 R, (r) [C, cos A@ + E, sin Aq],
2 (2.9)

wy' = Do Folnr + 3 Ty (r) [Dyn €057 (9 — Go) + F Sin (@ — G010

m=1

where Cp, Do Epy Gy, Ey\,» Dy, Epy are arbitrary constants, andX,
m=1, 2 3,....

From (2. 8) we obtain the equations for Ry and T

@Ry, 4 dRy g 24 :

i T F dr Tf( A+r)”h‘0 (2.10)
BTy | 4 dTy  m(r2— ATy,
dr? rodr r’(r"—A—r)"—:0

(}4, m=1, 2, 3, ...).

Equations (2. 10) are the equations of Fuchsian type with four
singular points [5]. For the equations in Ry, the smgular ints are
zero, an infinitely distant point, 1,°= ~1/2 +(1/4 + A)Y* and 1, =
=-1/2 — (14 + A)‘/’. The equations for Ty, in addition to zero
and an infinitely distant point, contain sin Jgular points at 5" = 1/2 +
F (/4 + A2 and 1™ = 1/2 — (1/4 + A)

It should be noted that the singular points r;° and rp° of Egs. (2.10)
are located on the internal and extérnal boundaries of the core in the
zero approximation of the problem.

Fig. 4

Since part of the boundary conditions (2. 5) and (2. 6) for w' is
given at r =1,° and r = rp, the solutions of Eqs. (2.10) in the vicinity
of their singular points 1y° and 1p° should be used in (2. 9).

For equations (2. 10), points r;° and r," are weak singular points,
and the roots of the determining equations at each of them are zero and
one. Therefore for each \ and m one of the independent particular
solutions of each equation of (2. 10) vanishes at a singular point, while
the other solution, containing a logarithm, has a nonzero value at the
singular point [5]. Using this and the last of relations (2. 5) and (2. 6),
we find that in (2. 10) only those particular solutions of Egs. (2.10) that
vanish at singular points r;° and 1,° can be used.

From the boundary conditions (2. 5), (2.6), and (2. 8) we- find
that in (2. 9) all the arbitrary constants with the exception of Cy and Dy
must be made zero.

Thus, the solutions of Eqgs. (2. 7) for boundary conditions (2. 5),
(2.8), and (2. 8) can be written as follows:

wy’ = CR(r)cos 2y, wy' = DT (rycos2(p — @o} , (2.11)

We now introduce the following notation for the expansions:

(r, o) = Z a, (r—r Y,

The particular solutions R(r), T(r) of Eqs. (2.10) forx =m = 2,
which are regular in the vicinity of singular points r;° and %, can be
written as follows:

Rr)y=@—r)+8060, T =(0r— %) + 82 (r, C) (2.13)

. 12)

their coefficients Cy and Cyi being successively determined from the
relations [5]

Cop [(A +n)n+ao(d 4 n)+ bo] + (2. 14)

n

+ 30, gl (Hn—k) 4 byl=0
k=1

(wv=1,2n=1,23 ...

in which ayy, buk are coefficients of the series

r—_rvo 4(r’——r1°2—-r1") (r1°——r)
r F=ly + (r - rvc)—lsv (I‘, a), r2 (T — "uo) =

= b4 (r— 1)1, (r, b)s
(v=1, 2}

The integration constants C and D in (2. 11) are given by

{2.15)

-—-b-—-r,°2+rg
D=dsy 55T 5, (6 C)

a@@t+a—r"—r'

%5 — i + S1(a, C)

C=d {2.16)

In (2. 13) the power series for R(r) has [5] the radius of conver-
gence 1;°, while the power series for T(r) has the radius of convergence
'

Using (2. 5), (2.6), (2.4), (2.11)~(2.16), we obtain the solution
of the problem in its final form:

for region 1

do(a2+a—r1 — ) [r—r’+ S {r, C)]costh
a—r°+ 8i(a, C)
r1°do (a3 4 a — r1°% — r1°) cos 2

G ile—r +S1(a, O)) °

(2.17)

for region 2
da(b'—b—rz‘”—{—rg)[r-—r; -+ Sa (7, C)]COSZ((P“‘?(PO)
v = b—r7 + 825, O) )

ra°dy (b — b — 1" 4 11°) c0s 2 (¢ — Qo) |
@r® — 1) [b—r® -+ 82 (b, C)]

(2.18)

ro =

Considering the linearized kinematic condition (2. 8), we see
thatv' = 0,

Let us consider, as a working example, the flow of a plastico-
viscous medium with ¢ = 1,32, v=3,95, 1,°=2, 1,°=3, A=6, and
v®=0,7.

In this case it is sufficient to retain in (2. 15) only five terms of
the series.

Figure 3 gives the contours of the pipe cross sections and the
boundaries of the corresponding cores for § = 0,25 in four characteris-
tic cases. Flgure 3a corresponds to the case ¢g = 90°, dg= 0.7, dg=
= 0.25. The case ¢g= 0, dy= 0.7, dg = 0.25 is given in Fig. 3b. Fig-
ure 3c corresponds to values ¢y = 90°, dg= 0, dg= 0.25. Figure 3d il-
lustrates the case o= 0, dg= 0.7, dg’= 0, The boundaries of the pipe
cross sections and the core boundaries corresponding to the first approx-
imation are given in Fig, 3 as solid lines, while the contours of the
pipe cross sections and the core boundaries for the zero approximation
are given as broken lines, The core cross sections corresponding to the
first approximation are shaded.
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Figure 4 gives the velocities in sections ¢ = 0 (broken line), ¢ =
= 45° (solid line), ¢ = 90° (dot-dashed line) for the case dg = 0.7, dg =
= 0.25, ¢y = 90°, In the section ¢ = 45°, the curve for velocity w
coincides with the curve for velocity w® in the zero approximation.
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